References
Below you will find references and sources used in our blogs/informative pages.
Ergothioneine Accumulation in a Medicinal Plant Gastrodia elata., Park et al., Journal of Medicinal Plant Research, 4(12) - 2010
Ergothioneine in microorganisms., Melville et al.,
Cornell University Medical College, 1956.
Ergothioneine in microorganisms, Melville et al.,
Cornell University Medical College, 1956
Discovery of the ergothioneine transporter, Gründemann, Harlfinger, Golz, et al.,
Proc Natl Acad Sci USA. 2005 Apr 5; 102(14): 5256–5261. Published online 2005 Mar 28. DOI: 10.1073/pnas.0408624102
Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein.
Toelzer, C., et al.
Science. 21 September 2020: eabd3255
DOI: 10.1126/science.abd3255
Edible Mushrooms as a Ubiquitous Source of Essential Fatty Acids.
Takahashia et al.,
Journal of Food Research, 2019
DOI: 10.1016/j.foodres.2019.108524
Micera, M., Botto, A., Geddo, F., Antoniotti, S., Bertea, C. N., Levi, R.,
Gallo, M. P., Querio, G. 2020: Antioxidants 9 (8); 688.
DOI:10.3390/antiox9080688
CARBOHYDRATES | Interactions with Other Food Components
Encyclopedia of Food Sciences and Nutrition, R.F. Tester, J. Karkalas, 2003
Biosynthesis of fungal and yeast glycans,
Microbial Glycobiology, Morgann C. Reilly, Tamara L. Doering, 2010
Mycelium Running, Stamets, Paul, 2005
Corentin Loren et al., Nature, May 2019
Bengtsen, Rasmussen et al., Nature Ecology & Evolution, April 2017
Factors Influencing the Composition of the Intestinal Microbiota in Early Infancy.
Penders, J., Thijs, C., Vink, C., Stelma, F.F., Snijders, B., Kummeling, I., van den Brandt, P.A., Stobberingh, E. Pediatrics August 2006; 118 (2): 511-521; DOI: 10.1542/peds.2005-2824
Ron Milo et al, Weizmann Institute of Science, 2016, and others
Wexler, H.M., "Bacteroides: the good, the bad, and the nitty-gritty". Clinical
Microbiology Reviews, 2007: 20 (4); 593–621. DOI:10.1128/CMR.00008-07.
Enterotypes of the Human Gut Microbiome.
Arumugam, M., Jeroen R.,[...], Bork, P., Nature volume 473;12 May 2011:(174–180)
DOI:10.1038/nature09944
Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes.
Wu, G.D., Chen, J., Hoffmann, C., Bittinger, K., Knight, R. [...]Science 07 Oct 2011; Vol.
334, Issue 6052: (105-108)
DOI: 10.1126/science.1208344
A healthy gastrointestinal microbiome is dependent on
dietary diversity,
Heiman, M.L .and Greenway, F.L.
Mol Metab. 2016 May; 5(5): 317–320.
DOI: 10.1016/j.molmet.2016.02.005.
The influence of diet on the gut microbiota and its
consequences for health,
Doré J et al.
Curr Opin Biotechnol. 2015 Apr; 32:(195-9)
DOI: 10.1016/j.copbio.2015.01.002.
Colonic Microbiome is Altered in Alcoholism.
Mutlu, E.A. et al
Am J Physiol Gastrointest Liver Physiol.
2012 May 1; 302(9): G966–G978.
DOI:10.1152/ajpgi.00380.2011
Diet effects in gut microbiome and obesity.
J Food Sci.
Chen, J., He, X. and Huang, J.
2014 Apr;79(4):R442-51.
DOI: 10.1111/1750-3841.12397
Bacterial – Fungal Interactions: Ecology, Mechanisms and Challenges
Becker et al., collaboration centred around the Max Planck Institute
Federation of European Microbiological Societies (FEMS) Reviews
DOI: 10.1093/femsre/fuy008
Bacteroides thetaiotaomicron-derived outer membrane vesicles promote regulatory dendritic cell responses in health but not in inflammatory bowel disease, Durant, L.,
Stentz, R., Noble, A. et al. Microbiome 8, 88 (2020).
DOI: 10.1186/s40168-020-00868-z
Methanogenic archaea in the human gastrointestinal tract Nat Rev Gastroenterol Hepatol
Christoph Hoegenauer et al.
DOI: 10.1038/s41575-022-00673-z
Quantification of hydrogen production by intestinal bacteria that are specifically dysregulated in Parkinson's disease
Suzuki, Ito, Hamaguchi et al., published: December 26, 2018
DOI: 10.1371/journal.pone.0208313
Bacterial – Fungal Interactions: Ecology, Mechanisms and Challenges
Becker et al.,
Max Planck Institute
Federation of European Microbiological Societies (FEMS) Reviews
DOI: 10.1093/femsre/fuy008
Vagus nerve stimulation promotes gastric emptying by
increasing pyloric opening measured with magnetic resonance
imaging.
Lu, K-H., Cao, J.,Oleson, S.,Ward, M. P., Phillips, R. J., Powley, T. L., Liu, Z.
Neurogastroenterol Motil: 2018 Oct;30(10):e13380.
DOI: 10.1111/nmo.13380.
Interleukin-10 Facilitates Glutamatergic Synaptic Transmission and Homeostatic
Plasticity in Cultured Hippocampal Neurons.
Nenov, M.N., Konakov, M.V., Teplov, I.Y., Levin, S.G.
“Mushroom consumption and incident risk of prostate cancer in Japan: A
pooled analysis of the Miyagi Cohort Study and the Ohsaki Cohort Study” by
Shu Zhang, Yumi Sugawara, Shiuan Chen, Robert B. Beelman, Tsuyoshi Tsuduki, Yasutake
Tomata, Sanae Matsuyama, and Ichiro Tsuji, 4 September 2019, International Journal of
Cancer. DOI: 10.1002/ijc.32591
"Dietary intakes of mushrooms and green tea combine to reduce
the risk of breast cancer in Chinese women"
Zhang, Huang, Xie and Holmen, International Journal of Cancer;
2009 Mar 15;124(6):1404-8. DOI: 10.1002/ijc.24047.
"The Association between Mushroom Consumption and Mild Cognitive
Impairment: A Community-Based Cross-Sectional Study in Singapore" Lei
Feng, Irwin Kee-Mun Cheah, Maisie Mei-Xi Ng, Jialiang Li, Sue Mei Chan, Su Lin Lim, Rathi Mahendran, Ee-Heok Kua, Barry Halliwell. Journal of Alzheimer's Disease, 2019; 1 DOI: 10.3233/JAD-180959
C-type lectin Langerin is a β-glucan receptor on human Langerhans cells that
recognizes opportunistic and pathogenic fungi.
Marein, de Jong, et al.,
Mol Immunol. 2010 Mar; 47(6): 1216–1225
DOI: 10.1016/j.molimm.2009.12.016
Fungi Friends: Mushroom Skincare & Mushroom Benefits for Skin - Keyla Kernel. https://drdennisgross.com/blogs/skincare-blog/mushroom-benefits-for-skin
Mushrooms for Focus: Our Tips for Supporting Brain Health - Alex Dorr. https://www.mushroomrevival.com/blogs/blog/mushrooms-for-focus
Chen, Y., Liu, D., Wang, D., Lai, S., Zhong, R., Liu, Y., et al. (2019c). Hypoglycemic Activity and Gut Microbiota Regulation of a Novel Polysaccharide from Grifola Frondosa in Type 2 Diabetic Mice. Food Chem. Toxicol. 126, 295–302. doi:10.1016/j.fct.2019.02.034
Afiati, F., Firza, S. F., Kusmiati, K., and Aliya, L. S. (2019). “The Effectiveness β-glucan of Shiitake Mushrooms and Saccharomyces cerevisiae as Antidiabetic and Antioxidant in Mice Sprague Dawley Induced Alloxan,” in AIP Conference Proceedings (Malang, Indonesia: AIP Publishing LLC), 070006. doi:10.1063/1.5115723
American Diabetes Association (2018). 2. Classification and Diagnosis of Dibetes: Standards of Medical Care in Diabetes-2019. Diabetes Care 42, S13–S28. doi:10.2337/dc19-S002
Aramabašić Jovanović, J., Mihailović, M., Uskoković, A., Grdović, N., Dinić, S., and Vidaković, M. (2021). The Effects of Major Mushroom Bioactive Compounds on Mechanisms that Control Blood Glucose Level. JoF 7, 58. doi:10.3390/jof7010058
Ashraf Khan, A., Gani, A., Masoodi, F. A., Mushtaq, U., and Silotry Naik, A. (2017). Structural, Rheological, Antioxidant, and Functional Properties of β-glucan Extracted from Edible Mushrooms Agaricus Bisporus, Pleurotus Ostreatus and Coprinus Attrimentarius. Bioactive Carbohydrates and Dietary Fibre 11, 67–74. doi:10.1016/j.bcdf.2017.07.006
Asmat, U., Abad, K., and Ismail, K. (2016). Diabetes Mellitus and Oxidative Stress-A Concise Review. Saudi Pharm. J. 24, 547–553. doi:10.1016/j.jsps.2015.03.013
Asrafuzzaman, M., Rahman, M. M., Mandal, M., Marjuque, M., Bhowmik, A., Rokeya, B., et al. (2018). Oyster Mushroom Functions as an Anti-hyperglycaemic through Phosphorylation of AMPK and Increased Expression of GLUT4 in Type 2 Diabetic Model Rats. J. Taibah Univ. Med. Sci. 13, 465–471. doi:10.1016/j.jtumed.2018.02.009
Ayepola, O. R., Brooks, N. L., and Oguntibeju, O. O. (2014). Oxidative Stress and Diabetic Complications: The Role of Antioxidant Vitamins and Flavonoids. Antioxidant-antidiabetic agents and human health. London: IntechOpen, 923–931. doi:10.5772/57282 [Internet]
Banerjee, M., and Vats, P. (2014). Reactive Metabolites and Antioxidant Gene Polymorphisms in Type 2 Diabetes Mellitus. Indian J. Hum. Genet. 20, 10–19. doi:10.4103/0971-6866.132747
Barros, L., Venturini, B. A., Baptista, P., Estevinho, L. M., and Ferreira, I. C. (2008). Chemical Composition and Biological Properties of Portuguese Wild Mushrooms: a Comprehensive Study. J. Agric. Food Chem. 56, 3856–3862. doi:10.1021/jf8003114
Bhanja, S. K., Nandan, C. K., Mandal, S., Bhunia, B., Maiti, T. K., Mondal, S., et al. (2012). Isolation and Characterization of the Immunostimulating β-glucans of an Edible Mushroom Termitomyces Robustus Var. Carbohydr. Res. 357, 83–89. doi:10.1016/j.carres.2012.04.007
Bhunia, S. K., Dey, B., Maity, K. K., Patra, S., Mandal, S., Maiti, S., et al. (2012). Heteroglycan from an Alkaline Extract of a Somatic Hybrid Mushroom (PfloVv1aFB) of Pleurotus florida and Volvariella Volvacea: Structural Characterization and Study of Immunoenhancing Properties. Carbohydr. Res. 354, 110–115. doi:10.1016/j.carres.2012.03.043
Brownlee, M. (2001). Biochemistry and Molecular Cell Biology of Diabetic Complications. Nature 414, 813–820. doi:10.1038/414813a
Brownlee, M., and Cerami, A. (1981). The Biochemistry of the Complications of Diabetes Mellitus. Annu. Rev. Biochem. 50, 385–432. doi:10.1146/annurev.bi.50.070181.002125
Brownlee, M. (2005). The Pathobiology of Diabetic Complications: a Unifying Mechanism. Diabetes 54, 1615–1625. doi:10.2337/diabetes.54.6.1615
Cai, W.-D., Ding, Z.-C., Wang, Y.-Y., Yang, Y., Zhang, H.-N., and Yan, J.-K. (2020). Hypoglycemic Benefit and Potential Mechanism of a Polysaccharide from Hericium erinaceus in Streptozotoxin-Induced Diabetic Rats. Process Biochem. 88, 180–188. doi:10.1016/j.procbio.2019.09.035
Cao, H., Wang, S., Cui, X., Guo, H., Xi, X., Xu, F., et al. (2019). Taking Ingredients as an Entry Point to Explore the Relationship between the Shaggy Ink Cap Medicinal Mushroom, Coprinus Comatus (Agaricomycetes), and Diabetes Mellitus (Review). Int. J. Med. Mushrooms 21 (5), 493–502. doi:10.1615/IntJMedMushrooms.2019030638
Ceriello, A. (2006). Oxidative Stress and Diabetes-Associated Complications. Endocr. Pract. 12, 60–62. doi:10.4158/EP.12.S1.60
Chaiyasut, C., and Sivamaruthi, B. S. (2017). Anti-hyperglycemic Property of Hericium erinaceus - A Mini Review. Asian Pac. J. Trop. Biomed. 7, 1036–1040. doi:10.1016/j.apjtb.2017.09.024
Chandra, K., Singh, P., Dwivedi, S., and Jain, S. (2019). Diabetes Mellitus and Oxidative Stress: A Co-relative and Therapeutic Approach. Jcdr 13, 7–12. doi:10.7860/JCDR/2019/40628.12878
Chen, H., Tian, T., Miao, H., and Zhao, Y. Y. (2016a). Traditional Uses, Fermentation, Phytochemistry and Pharmacology of Phellinus Linteus: A Review. Fitoterapia 113, 6–26. doi:10.1016/j.fitote.2016.06.009
Chen, L., Zhang, Y., Sha, O., Xu, W., and Wang, S. (2016b). Hypolipidaemic and Hypoglycaemic Activities of Polysaccharide from Pleurotus Eryngii in Kunming Mice. Int. J. Biol. Macromol. 93, 1206–1209. doi:10.1016/j.ijbiomac.2016.09.094
Chen, M., Xiao, D., Liu, W., Song, Y., Zou, B., Li, L., et al. (2020). Intake of Ganoderma Lucidum Polysaccharides Reverses the Disturbed Gut Microbiota and Metabolism in Type 2 Diabetic Rats. Int. J. Biol. Macromol. 155, 890–902. doi:10.1016/j.ijbiomac.2019.11.047
Chen, Y., Liu, D., Wang, D., Lai, S., Zhong, R., Liu, Y., et al. (2019c). Hypoglycemic Activity and Gut Microbiota Regulation of a Novel Polysaccharide from Grifola Frondosa in Type 2 Diabetic Mice. Food Chem. Toxicol. 126, 295–302. doi:10.1016/j.fct.2019.02.034
Chen, Y., Liu, Y., Sarker, M. M. R., Yan, X., Yang, C., Zhao, L., et al. (2018). Structural Characterization and Antidiabetic Potential of a Novel Heteropolysaccharide from Grifola Frondosa via IRS1/PI3K-JNK Signaling Pathways. Carbohydr. Polym. 198, 452–461. doi:10.1016/j.carbpol.2018.06.077
Cheng, F., Yan, X., Zhang, M., Chang, M., Yun, S., Meng, J., et al. (2017). Regulation of RAW 264.7 Cell-Mediated Immunity by Polysaccharides from Agaricus Blazei Murill via the MAPK Signal Transduction Pathway. Food Funct. 8, 1475–1480. doi:10.1039/c6fo01332e
Choi, D., Piao, Y., Yu, S.-J., Lee, Y.-W., Lim, D.-H., Chang, Y.-C., et al. (2016a). Antihyperglycemic and Antioxidant Activities of Polysaccharide Produced from Pleurotus Ferulae in Streptozotocin-Induced Diabetic Rats. Korean J. Chem. Eng. 33, 1872–1882. doi:10.1007/s11814-016-0007-8
Chung, S. S., Ho, E. C., Lam, K. S., and Chung, S. K. (2003). Contribution of Polyol Pathway to Diabetes-Induced Oxidative Stress. J. Am. Soc. Nephrol. 14, S233–S236. doi:10.1097/01.asn.0000077408.15865.06
de la Fuente, J. A., and Manzanaro, S. (2003). Aldose Reductase Inhibitors from Natural Sources. Nat. Prod. Rep. 20, 243–251. doi:10.1039/b204709h
De Silva, D. D., Rapior, S., Hyde, K. D., and Bahkali, A. H. (2012). Medicinal Mushrooms in Prevention and Control of Diabetes Mellitus. Fungal Divers. 56, 1–29. doi:10.1007/s13225-012-0187-4
Denhez, B., Rousseau, M., Dancosst, D. A., Lizotte, F., Guay, A., Auger-Messier, M., et al. (2019). Diabetes-induced DUSP4 Reduction Promotes Podocyte Dysfunction and Progression of Diabetic Nephropathy. Diabetes 68, 1026–1039. doi:10.2337/db18-0837
Du, X., Edelstein, D., and Brownlee, M. (2008). Oral Benfotiamine Plus Alpha-Lipoic Acid Normalises Complication-Causing Pathways in Type 1 Diabetes. Diabetologia 51, 1930–1932. doi:10.1007/s00125-008-1100-2
El Sheikha, A. F., and Hu, D.-M. (2018). How to Trace the Geographic Origin of Mushrooms? Trends Food Sci. Tech. 78, 292–303. doi:10.1016/j.tifs.2018.06.008
Erejuwa, O. O. (2012). Oxidative Stress in Diabetes Mellitus: Is There a Role for Hypoglycemic Drugs And/or Antioxidants. Oxidative Stress Dis. 217, 246.
Evans, J. L., Goldfine, I. D., Maddux, B. A., and Grodsky, G. M. (2003). Are Oxidative Stress-Activated Signaling Pathways Mediators of Insulin Resistance and Beta-Cell Dysfunction? Diabetes 52, 1–8. doi:10.2337/diabetes.52.1.1
Evans, J. L., Goldfine, I. D., Maddux, B. A., and Grodsky, G. M. (2002). Oxidative Stress and Stress-Activated Signaling Pathways: a Unifying Hypothesis of Type 2 Diabetes. Endocr. Rev. 23, 599–622. doi:10.1210/er.2001-0039
Fan, L., Li, J., Deng, K., and Ai, L. (2012). Effects of Drying Methods on the Antioxidant Activities of Polysaccharides Extracted from Ganoderma Lucidum. Carbohydr. Polym. 87, 1849–1854. doi:10.1016/j.carbpol.2011.10.018
Farhangi, M. A., Mesgari-Abbasi, M., Hajiluian, G., Nameni, G., and Shahabi, P. (2017). Adipose Tissue Inflammation and Oxidative Stress: the Ameliorative Effects of Vitamin D. Inflammation 40, 1688–1697. doi:10.1007/s10753-017-0610-9
Fleming, A. K., and Storz, P. (2017). Protein Kinase C Isoforms in the normal Pancreas and in Pancreatic Disease. Cell. Signal. 40, 1–9. doi:10.1016/j.cellsig.2017.08.005
Folli, F., Corradi, D., Fanti, P., Davalli, A., Paez, A., Giaccari, A., et al. (2011). The Role of Oxidative Stress in the Pathogenesis of Type 2 Diabetes Mellitus Micro- and Macrovascular Complications: Avenues for a Mechanistic-Based Therapeutic Approach. Curr. Diabetes Rev. 7, 313–324. doi:10.2174/157339911797415585
Friedman, M. (2016). Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods 5 (4), 80. doi:10.3390/foods5040080
Ganesan, K., and Xu, B. (2019). Anti-diabetic Effects and Mechanisms of Dietary Polysaccharides. Molecules 24, 2556. doi:10.3390/molecules24142556
Gargiulo, G. (2018). Next-Generation In Vivo Modeling of Human Cancers. Front. Oncol. 8, 429. doi:10.3389/fonc.2018.00429
Giacco, F., and Brownlee, M. (2010). Oxidative Stress and Diabetic Complications. Circ. Res. 107, 1058–1070. doi:10.1161/CIRCRESAHA.110.223545
Giugliano, D., Ceriello, A., and Paolisso, G. (1995). Diabetes Mellitus, Hypertension, and Cardiovascular Disease: Which Role for Oxidative Stress? Metabolism 44, 363–368. doi:10.1016/0026-0495(95)90167-1
Gong, P., Wang, S., Liu, M., Chen, F., Yang, W., Chang, X., et al. (2020). Extraction Methods, Chemical Characterizations and Biological Activities of Mushroom Polysaccharides: A Mini-Review. Carbohydr. Res. 494, 108037. doi:10.1016/j.carres.2020.108037
Guo, W. L., Deng, J. C., Pan, Y. Y., Xu, J. X., Hong, J. L., Shi, F. F., et al. (2020). Hypoglycemic and Hypolipidemic Activities of Grifola Frondosa Polysaccharides and Their Relationships with the Modulation of Intestinal Microflora in Diabetic Mice Induced by High-Fat Diet and Streptozotocin. Int. J. Biol. Macromol. 153, 1231–1240. doi:10.1016/j.ijbiomac.2019.10.253
He, C. Y., Li, W. D., Guo, S. X., Lin, S. Q., and Lin, Z. B. (2006). Effect of Polysaccharides from Ganoderma Lucidum on Streptozotocin-Induced Diabetic Nephropathy in Mice. J. Asian Nat. Prod. Res. 8, 705–711. doi:10.1080/10286020500289071
Heinrich, M., Appendino, G., Efferth, T., Fürst, R., Izzo, A. A., Kayser, O., et al. (2020). Best Practice in Research - Overcoming Common Challenges in Phytopharmacological Research. J. Ethnopharmacol 246, 112230. doi:10.1016/j.jep.2019.112230
Hsu, C. H., Liao, Y. L., Lin, S. C., Hwang, K. C., and Chou, P. (2007). The Mushroom Agaricus Blazei Murill in Combination with Metformin and Gliclazide Improves Insulin Resistance in Type 2 Diabetes: a Randomized, Double-Blinded, and Placebo-Controlled Clinical Trial. J. Altern. Complement. Med. 13 (1), 97–102. doi:10.1089/acm.2006.6054
Hu, X., Liu, C., Wang, X., Jia, D., Lu, W., Sun, X., et al. (2017). Hpyerglycemic and Anti-diabetic Nephritis Activities of Polysaccharides Separated from Auricularia Auricular in Diet-Streptozotocin-Induced Diabetic Rats. Exp. Ther. Med. 13, 352–358. doi:10.3892/etm.2016.3943
Huang, H. Y., Korivi, M., Yang, H. T., Huang, C. C., Chaing, Y. Y., and Tsai, Y. C. (2014). Effect of Pleurotus Tuber-Regium Polysaccharides Supplementation on the Progression of Diabetes Complications in Obese-Diabetic Rats. Chin. J. Physiol. 57, 198–208. doi:10.4077/CJP.2014.BAC245
Huang, Z., Zhang, M., Wang, Y., Zhang, S., and Jiang, X. (2020). Extracellular and Intracellular Polysaccharide Extracts of Trametes versicolor Improve Lipid Profiles via Serum Regulation of Lipid-Regulating Enzymes in Hyperlipidemic Mice. Curr. Microbiol. 77, 3526–3537. doi:10.1007/s00284-020-02156-3
Ighodaro, O. M. (2018). Molecular Pathways Associated with Oxidative Stress in Diabetes Mellitus. Biomed. Pharmacother. 108, 656–662. doi:10.1016/j.biopha.2018.09.058
Jang, J. S., Lee, J. S., Lee, J. H., Kwon, D. S., Lee, K. E., Lee, S. Y., et al. (2010). Hispidin Produced from Phellinus Linteus Protects Pancreatic Beta-Cells from Damage by Hydrogen Peroxide. Arch. Pharm. Res. 33, 853–861. doi:10.1007/s12272-010-0607-5
Jaszek, M., Osińska-Jaroszuk, M., Janusz, G., Matuszewska, A., Stefaniuk, D., Sulej, J., et al. (2013). New Bioactive Fungal Molecules with High Antioxidant and Antimicrobial Capacity Isolated from Cerrena Unicolor Idiophasic Cultures. Biomed. Res. Int. 2013, 497492. doi:10.1155/2013/497492
Jaworska, G., Pogoń, K., Skrzypczak, A., and Bernaś, E. (2015). Composition and Antioxidant Properties of Wild Mushrooms Boletus Edulis and Xerocomus Badius Prepared for Consumption. J. Food Sci. Technol. 52, 7944–7953. doi:10.1007/s13197-015-1933-x
Jayachandran, M., Zhang, T., Ganesan, K., Xu, B., and Chung, S. S. M. (2018). Isoquercetin Ameliorates Hyperglycemia and Regulates Key Enzymes of Glucose Metabolism via Insulin Signaling Pathway in Streptozotocin-Induced Diabetic Rats. Eur. J. Pharmacol. 829, 112–120. doi:10.1016/j.ejphar.2018.04.015
Jia, J., Zhang, X., Hu, Y.-S., Wu, Y., Wang, Q.-Z., Li, N.-N., et al. (2009). Evaluation of In Vivo Antioxidant Activities of Ganoderma Lucidum Polysaccharides in STZ-Diabetic Rats. Food Chem. 115, 32–36. doi:10.1016/j.foodchem.2008.11.043
Jiang, Q. (2014). Natural Forms of Vitamin E: Metabolism, Antioxidant, and Anti-inflammatory Activities and Their Role in Disease Prevention and Therapy. Free Radic. Biol. Med. 72, 76–90. doi:10.1016/j.freeradbiomed.2014.03.035
Jiang, X., Meng, W., Li, L., Meng, Z., and Wang, D. (2020). Adjuvant Therapy with Mushroom Polysaccharides for Diabetic Complications. Front. Pharmacol. 11, 168. doi:10.3389/fphar.2020.00168
Jovanović, J. A., Mihailović, M., Uskoković, A. S., Grdović, N., Dinić, S., Poznanović, G., et al. (2017). Evaluation of the Antioxidant and Antiglycation Effects of Lactarius Deterrimus and Castanea Sativa Extracts on Hepatorenal Injury in Streptozotocin-Induced Diabetic Rats. Front. Pharmacol. 8, 793. doi:10.3389/fphar.2017.00793
Jugran, A. K., Rawat, S., Devkota, H. P., Bhatt, I. D., and Rawal, R. S. (2021). Diabetes and Plant-Derived Natural Products: From Ethnopharmacological Approaches to Their Potential for Modern Drug Discovery and Development. Phytother. Res. 35, 223–245. doi:10.1002/ptr.6821
Kanagasabapathy, G., Kuppusamy, U. R., Abd Malek, S. N., Abdulla, M. A., Chua, K. H., and Sabaratnam, V. (2012). Glucan-rich Polysaccharides from Pleurotus Sajor-Caju (Fr.) Singer Prevents Glucose Intolerance, Insulin Resistance and Inflammation in C57BL/6J Mice Fed a High-Fat Diet. BMC Complement. Altern. Med. 12, 261–269. doi:10.1186/1472-6882-12-261
Khursheed, R., Singh, S. K., Wadhwa, S., Gulati, M., and Awasthi, A. (2020). Therapeutic Potential of Mushrooms in Diabetes Mellitus: Role of Polysaccharides. Int. J. Biol. Macromol. 164, 1194–1205. doi:10.1016/j.ijbiomac.2020.07.145
Kiho, T., Morimoto, H., Kobayashi, T., UsUI, S., Ukai, S., Aizawa, K., et al. (2000). Effect of a Polysaccharide (TAP) from the Fruiting Bodies of Tremella Aurantia on Glucose Metabolism in Mouse Liver. Biosci. Biotechnol. Biochem. 64, 417–419. doi:10.1271/bbb.64.417
Kim, H. M., Kang, J. S., Kim, J. Y., Park, S. K., Kim, H. S., Lee, Y. J., et al. (2010a). Evaluation of Antidiabetic Activity of Polysaccharide Isolated from Phellinus Linteus in Non-obese Diabetic Mouse. Int. Immunopharmacol. 10, 72–78. doi:10.1016/j.intimp.2009.09.024
Kim, M. Y., Seguin, P., Ahn, J. K., Kim, J. J., Chun, S. C., Kim, E. H., et al. (2008). Phenolic Compound Concentration and Antioxidant Activities of Edible and Medicinal Mushrooms from Korea. J. Agric. Food Chem. 56, 7265–7270. doi:10.1021/jf8008553
Kotowski, M. A. (2019). History of Mushroom Consumption and its Impact on Traditional View on Mycobiota–An Example from Poland. Microb. Biosyst. 4, 1–13.
Kozarski, M., Klaus, A., Niksic, M., Jakovljevic, D., Helsper, J. P. F. G., and Van Griensven, L. J. L. D. (2011). Antioxidative and Immunomodulating Activities of Polysaccharide Extracts of the Medicinal Mushrooms Agaricus Bisporus, Agaricus Brasiliensis, Ganoderma Lucidum and Phellinus Linteus. Food Chem. 129, 1667–1675. doi:10.1016/j.foodchem.2011.06.029
Laurino, L. F., Viroel, F. J. M., Pickler, T. B., and Gerenutti, M. (2017). Functional Foods in Gestational Diabetes: Evaluation of the Oral Glucose Tolerance Test (OGTT) in Pregnant Rats Treated with Mushrooms. Reprod. Toxicol. 72, 36. doi:10.1016/j.reprotox.2017.06.151
Lee, I. K., Lee, J. H., and Yun, B. S. (2008c). Polychlorinated Compounds with PPAR-Gamma Agonistic Effect from the Medicinal Fungus Phellinus Ribis. Bioorg. Med. Chem. Lett. 18, 4566–4568. doi:10.1016/j.bmcl.2008.07.034
Lee, Y. S., Kang, I. J., Won, M. H., Lee, J. Y., Kim, J. K., and Lim, S. S. (2010b). Inhibition of Protein Tyrosine Phosphatase 1beta by Hispidin Derivatives Isolated from the Fruiting Body of Phellinus Linteus. Nat. Prod. Commun. 5, 1927–1930. doi:10.1177/1934578x1000501218
Lee, Y. S., Kang, Y. H., Jung, J. Y., Kang, I. J., Han, S. N., Chung, J. S., et al. (2008b). Inhibitory Constituents of Aldose Reductase in the Fruiting Body of Phellinus Linteus. Biol. Pharm. Bull. 31, 765–768. doi:10.1248/bpb.31.765
Lee, Y. S., Kang, Y. H., Jung, J. Y., Lee, S., Ohuchi, K., Shin, K. H., et al. (2008a). Protein Glycation Inhibitors from the Fruiting Body of Phellinus Linteus. Biol. Pharm. Bull. 31, 1968–1972. doi:10.1248/bpb.31.1968
Lei, H., Guo, S., Han, J., Wang, Q., Zhang, X., and Wu, W. (2012). Hypoglycemic and Hypolipidemic Activities of MT-α-glucan and its Effect on Immune Function of Diabetic Mice. Carbohydr. Polym. 89, 245–250. doi:10.1016/j.carbpol.2012.03.003
Lei, H., Zhang, M., Wang, Q., Guo, S., Han, J., Sun, H., et al. (2013). MT-α-glucan from the Fruit Body of the Maitake Medicinal Mushroom Grifola Frondosa (Higher Basidiomyetes) Shows Protective Effects for Hypoglycemic Pancreatic β-cells. Int. J. Med. Mushrooms. 15 (4), 373–381. doi:10.1615/intjmedmushr.v15.i4.50
Lena Ahmed Saleh Al-Faqeeh, L. A. S., Rafiuddin Naser, R., Kagne SR, S. R., and Subur W. Khan, S. W. (2021). Activity of Mushrooms against Diabetic and Inflammation: A Review. GSC Biol. Pharm. Sci. 14, 037–044. doi:10.30574/gscbps.2021.14.2.0035
Li, L., Guo, W. L., Zhang, W., Xu, J. X., Qian, M., Bai, W. D., et al. (2019). Grifola Frondosa Polysaccharides Ameliorate Lipid Metabolic Disorders and Gut Microbiota Dysbiosis in High-Fat Diet Fed Rats. Food Funct. 10 (5), 2560–2572. doi:10.1039/c9fo00075e
Li, Y., Zhang, J., Li, T., Liu, H., and Wang, Y. (2016). A Comprehensive and Comparative Study of Wolfiporia Extensa Cultivation Regions by Fourier Transform Infrared Spectroscopy and Ultra-fast Liquid Chromatography. PLoS One 11, e0168998. doi:10.1371/journal.pone.0168998
Li, Z. (2011). Protective Effects of Ganoderma Lucidum Polyccharide on Myocardial Fibrosis. Chin. Hosp. Pharm. J. 31 (20), 1706–1710.
Liang, B., Guo, Z., Xie, F., and Zhao, A. (2013). Antihyperglycemic and Antihyperlipidemic Activities of Aqueous Extract of Hericium erinaceus in Experimental Diabetic Rats. BMC Complement. Altern. Med. 13, 253–257. doi:10.1186/1472-6882-13-253
Lindequist, U., and Haertel, B. (2020). Medicinal Mushrooms for Treatment of Type 2 Diabetes: an Update on Clinical Trials. Int. J. Med. Mushrooms. 22 (9), 845–854. doi:10.1615/IntJMedMushrooms.2020035863
Liu, J., Jia, L., Kan, J., and Jin, C. H. (2013a). In Vitro and In Vivo Antioxidant Activity of Ethanolic Extract of white Button Mushroom (Agaricus Bisporus). Food Chem. Toxicol. 51, 310–316. doi:10.1016/j.fct.2012.10.014
Liu, Y., Chen, D., You, Y., Zeng, S., Hu, Y., Duan, X., et al. (2016b). Structural Characterization and Antidiabetic Activity of a Glucopyranose-Rich Heteropolysaccharide from Catathelasma Ventricosum. Carbohydr. Polym. 149, 399–407. doi:10.1016/j.carbpol.2016.04.106
Liu, Y., Sun, J., Rao, S., Su, Y., and Yang, Y. (2013c). Antihyperglycemic, Antihyperlipidemic and Antioxidant Activities of Polysaccharides from Catathelasma Ventricosum in Streptozotocin-Induced Diabetic Mice. Food Chem. Toxicol. 57, 39–45. doi:10.1016/j.fct.2013.03.001
Liu, Y., Li, Y., Zhang, W., Sun, M., and Zhang, Z. (2019). Hypoglycemic Effect of Inulin Combined with Ganoderma Lucidum Polysaccharides in T2DM Rats. J. Funct. Foods 55, 381–390. doi:10.1016/j.jff.2019.02.036
Lo, H. C., and Wasser, S. P. (2011). Medicinal Mushrooms for Glycemic Control in Diabetes Mellitus: History, Current Status, Future Perspectives, and Unsolved Problems (Review). Int. J. Med. Mushrooms 13 (5), 401–426. doi:10.1615/intjmedmushr.v13.i5.10
Lu, A., Yu, M., Shen, M., Fang, Z., Xu, Y., Wang, S., et al. (2018). Antioxidant and Anti-diabetic Effects of Auricularia Auricular Polysaccharides and Their Degradation by Artificial Gastrointestinal Digestion - Bioactivity of Auricularia Auricular Polysaccharides and Their Hydrolysates. Acta Sci. Pol. Technol. Aliment. 17, 277–288. doi:10.17306/J.AFS.0557
Lu, J., He, R., Sun, P., Zhang, F., Linhardt, R. J., and Zhang, A. (2020a). Molecular Mechanisms of Bioactive Polysaccharides from Ganoderma Lucidum (Lingzhi), a Review. Int. J. Biol. Macromol. 150, 765–774. doi:10.1016/j.ijbiomac.2020.02.035
Lu, W. J., Lin, S. C., Lan, C. C., Lee, T. Y., Hsia, C. H., Huang, Y. K., et al. (2014). Effect of Antrodia Camphorata on Inflammatory Arterial Thrombosis-Mediated Platelet Activation: the Pivotal Role of Protein Kinase C. ScientificWorldJournal 2014, 745802. doi:10.1155/2014/745802
Lykkesfeldt., J., Michels, A. J., and Frei., B. (2014). Vitamin C. Adv. Nutr. 5 (1), 16–18. doi:10.3945/an.113.005157
Ma, X., Zhou, F., Chen, Y., Zhang, Y., Hou, L., Cao, X., et al. (2014). A Polysaccharide from Grifola Frondosa Relieves Insulin Resistance of HepG2 Cell by Akt-GSK-3 Pathway. Glycoconj. J. 31, 355–363. doi:10.1007/s10719-014-9526-x
Mahendran, S., Anandapandian, K. T. K., Shankar, T., Chellaram, C., and Vijayabaskar, P. (2012). Antioxidant Properties of Ganoderma Lucidum Crude Exopolysaccharide. Indian J. Innov. Dev. 1, 1–6. doi:10.12989/amr.2012.1.2.147
Maity, P., Samanta, S., Nandi, A. K., Sen, I. K., Paloi, S., Acharya, K., et al. (2014). Structure Elucidation and Antioxidant Properties of a Soluble β-D-glucan from Mushroom Entoloma Lividoalbum. Int. J. Biol. Macromol. 63, 140–149. doi:10.1016/j.ijbiomac.2013.10.040
Maity, P., Sen, I. K., Chakraborty, I., Mondal, S., Bar, H., Bhanja, S. K., et al. (2021). Biologically Active Polysaccharide from Edible Mushrooms: A Review. Int. J. Biol. Macromol. 172, 408–417. doi:10.1016/j.ijbiomac.2021.01.081
Maity, P., Sen, I. K., Maji, P. K., Paloi, S., Devi, K. S., Acharya, K., et al. (2015). Structural, Immunological, and Antioxidant Studies of β-glucan from Edible Mushroom Entoloma Lividoalbum. Carbohydr. Polym. 123, 350–358. doi:10.1016/j.carbpol.2015.01.051
Mao, G. H., Ren, Y., Feng, W. W., Li, Q., Wu, H. Y., Jin, D., et al. (2015). Antitumor and Immunomodulatory Activity of a Water-Soluble Polysaccharide from Grifola Frondosa. Carbohydr. Polym. 134, 406–412. doi:10.1016/j.carbpol.2015.08.020
Marín-Peñalver, J. J., Martín-Timón, I., Sevillano-Collantes, C., and del Cañizo-Gómez, F. J. (2016). Update on the Treatment of Type 2 Diabetes Mellitus. World J. Diabetes 7, 354–395.
Maritim, A. C., Sanders, R. A., and Watkins, J. B. (2003). Diabetes, Oxidative Stress, and Antioxidants: a Review. J. Biochem. Mol. Toxicol. 17, 24–38. doi:10.1002/jbt.10058
Meneguin, A. B., Silvestre, A. L. P., Sposito, L., de Souza, M. P. C., Sábio, R. M., Araújo, V. H. S., et al. (2021). The Role of Polysaccharides from Natural Resources to Design Oral Insulin Micro- and Nanoparticles Intended for the Treatment of Diabetes Mellitus: A Review. Carbohydr. Polym. 256, 117504. doi:10.1016/j.carbpol.2020.117504
Meng, G., Zhu, H., Yang, S., Wu, F., Zheng, H., Chen, E., et al. (2011). Attenuating Effects of Ganoderma Lucidum Polysaccharides on Myocardial Collagen Cross-Linking Relates to Advanced Glycation End Product and Antioxidant Enzymes in High-Fat-Diet and Streptozotocin-Induced Diabetic Rats. Carbohydr. Polym. 84, 180–185. doi:10.1016/j.carbpol.2010.11.016
Meng, X., Liang, H., and Luo, L. (2016). Antitumor Polysaccharides from Mushrooms: a Review on the Structural Characteristics, Antitumor Mechanisms and Immunomodulating Activities. Carbohydr. Res. 424, 30–41. doi:10.1016/j.carres.2016.02.008
Michalik, L., and Wahli, W. (2006). Involvement of PPAR Nuclear Receptors in Tissue Injury and Wound Repair. J. Clin. Invest. 116, 598–606. doi:10.1172/JCI27958
Mihailović, M., Arambašić Јovanović, J., Uskoković, A., Grdović, N., Dinić, S., Vidović, S., et al. (2015). Protective Effects of the MushroomLactarius deterrimusExtract on Systemic Oxidative Stress and Pancreatic Islets in Streptozotocin-Induced Diabetic Rats. J. Diabetes Res. 2015, 1–10. doi:10.1155/2015/576726
Nagai, R., Shirakawa, J., Ohno, R., Moroishi, N., and Nagai, M. (2014). Inhibition of AGEs Formation by Natural Products. Amino Acids 46, 261–266. doi:10.1007/s00726-013-1487-z
Nandi, A. K., Samanta, S., Maity, S., Sen, I. K., Khatua, S., Devi, K. S., et al. (2014). Antioxidant and Immunostimulant β-glucan from Edible Mushroom Russula Albonigra (Krombh.) Fr. Carbohydr. Polym. 99, 774–782. doi:10.1016/j.carbpol.2013.09.016
Ndeh, D., Rogowski, A., Cartmell, A., Luis, A. S., Baslé, A., Gray, J., et al. (2017). Complex Pectin Metabolism by Gut Bacteria Reveals Novel Catalytic Functions. Nature 544, 65–70. doi:10.1038/nature21725
Niego, A. G., Rapior, S., Thongklang, N., Raspé, O., Jaidee, W., Lumyong, S., et al. (2021). Macrofungi as a Nutraceutical Source: Promising Bioactive Compounds and Market Value. JoF 7, 397. doi:10.3390/jof7050397
Nishikawa, T., Edelstein, D., Du, X. L., Yamagishi, S., Matsumura, T., Kaneda, Y., et al. (2000). Normalizing Mitochondrial Superoxide Production Blocks Three Pathways of Hyperglycaemic Damage. Nature 404, 787–790. doi:10.1038/35008121
Nishizuka, Y. (1995). Protein Kinase C and Lipid Signaling for Sustained Cellular Responses. FASEB J. 9, 484–496. doi:10.1096/fasebj.9.7.7737456
Oh, T. W., Kim, Y. A., Jang, W. J., Byeon, J. I., Ryu, C. H., Kim, J. O., et al. (2010). Semipurified Fractions from the Submerged-Culture Broth of Agaricus Blazei Murill Reduce Blood Glucose Levels in Streptozotocin-Induced Diabetic Rats. J. Agric. Food Chem. 58, 4113–4119. doi:10.1021/jf9036672
Pattanayak, M., Samanta, S., Maity, P., Sen, I. K., Nandi, A. K., Manna, D. K., et al. (2015). Heteroglycan of an Edible Mushroom Termitomyces Clypeatus: Structure Elucidation and Antioxidant Properties. Carbohydr. Res. 413, 30–36. doi:10.1016/j.carres.2015.05.005
Pei, J. J., Wang, Z. B., Ma, H. L., and Yan, J. K. (2015). Structural Features and Antitumor Activity of a Novel Polysaccharide from Alkaline Extract of Phellinus Linteus Mycelia. Carbohydr. Polym. 115, 472–477. doi:10.1016/j.carbpol.2014.09.017
Pham-Huy, L. A., He, H., and Pham-Huy, C. (2008). Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. 4, 89–96.
Power, R. C., Salazar-García, D. C., Straus, L. G., González Morales, M. R., and Henry, A. G. (2015). Microremains from El Mirón Cave Human Dental Calculus Suggest a Mixed Plant-Animal Subsistence Economy during the Magdalenian in Northern Iberia. J. Archaeological Sci. 60, 39–46. doi:10.1016/j.jas.2015.04.003
Qiao, J., Dou, Z., Xu, J., Wu, F., Meng, G., Chen, H., et al. (2014). Intervention of Ganoderma Lucidum Polysaccharide in Combination with Metformin on Myocardial Fibrosis in Diabetes Mellitus Rats. Chin. Tradit. Herb. Drugs 34 (20), 1709–1713.
Rajamani, U., and Essop, M. F. (2010). Hyperglycemia-mediated Activation of the Hexosamine Biosynthetic Pathway Results in Myocardial Apoptosis. Am. J. Physiol. Cell Physiol 299, C139–C147. doi:10.1152/ajpcell.00020.2010
Rajoriya, A., Tripathy, S. S., and Gupta, N. (2015b). In Vitro antioxidant Activity of Selected Ganoderma Species Found in Odisha, India. Trop. Plant Res. 2, 72–77.
Reis, F. S., Stojković, D., Soković, M., Glamočlija, J., Ćirić, A., Barros, L., et al. (2012). Chemical Characterization of Agaricus Bohusii, Antioxidant Potential and Antifungal Preserving Properties when Incorporated in Cream Cheese. Food Res. Int. 48, 620–626. doi:10.1016/j.foodres.2012.06.013
Ribeiro, T. P., Fernandes, C., Melo, K. V., Ferreira, S. S., Lessa, J. A., Franco, R. W., et al. (2015). Iron, Copper, and Manganese Complexes with In Vitro Superoxide Dismutase And/or Catalase Activities that Keep Saccharomyces cerevisiae Cells Alive under Severe Oxidative Stress. Free Radic. Biol. Med. 80, 67–76. doi:10.1016/j.freeradbiomed.2014.12.005
Robertson, R. P. (2004). Chronic Oxidative Stress as a central Mechanism for Glucose Toxicity in Pancreatic Islet Beta Cells in Diabetes. J. Biol. Chem. 279, 42351–42354. doi:10.1074/jbc.R400019200
Rolo, A. P., and Palmeira, C. M. (2006). Diabetes and Mitochondrial Function: Role of Hyperglycemia and Oxidative Stress. Toxicol. Appl. Pharmacol. 212, 167–178. doi:10.1016/j.taap.2006.01.003
Rozoy, E., Simard, S., Liu, Y., Kitts, D., Lessard, J., and Bazinet, L. (2012). The Use of Cyclic Voltammetry to Study the Oxidation of L-5-Methyltetrahydrofolate and its Preservation by Ascorbic Acid. Food Chem. 132, 1429–1435. doi:10.1016/j.foodchem.2011.11.132
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., et al. (2019). Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 157, 107843. doi:10.1016/j.diabres.2019.107843
Saini, V. (2010). Molecular Mechanisms of Insulin Resistance in Type 2 Diabetes Mellitus. World J. Diabetes 1 (3), 68–75. doi:10.4239/wjd.v1.i3.68
Salvemini, D., Wang, Z. Q., Zweier, J. L., Samouilov, A., Macarthur, H., Misko, T. P., et al. (1999). A Nonpeptidyl Mimic of Superoxide Dismutase with Therapeutic Activity in Rats. Science 286, 304–306. doi:10.1126/science.286.5438.304
Samsudin, N. I. P., and Abdullah, N. (2019). Edible Mushrooms from Malaysia; a Literature Review on Their Nutritional and Medicinal Properties. Int. Food Res. J. 26, 11–31.
Sánchez, C. (2017). Reactive Oxygen Species and Antioxidant Properties from Mushrooms. Synth. Syst. Biotechnol. 2, 13–22.
Scheen, A. J. (2004). Pathophysiology of Insulin Secretion. Ann. d'Endocrinologie 65, 29–36. doi:10.1016/s0003-4266(04)95627-2
Sevindik, M., Akgul, H., Selamoglu, Z., and Braidy, N. (2020). Antioxidant and Antigenotoxic Potential of Infundibulicybe Geotropa Mushroom Collected from Northwestern Turkey. Oxid. Med. Cell. Longev. 2020, 5620484. doi:10.1155/2020/5620484
Sevindik, M. (2019). Wild Edible Mushroom Cantharellus Cibarius as a Natural Antioxidant Food. Turk. J. Agric.-Food Sci. Technol. 7, 1377–1381.
Shen, M., Fang, Z., Chen, Y., Chen, Y., Xiao, B., Guo, L., et al. (2019). Hypoglycemic Effect of the Degraded Polysaccharides from the wood Ear Medicinal Mushroom Auricularia Auricula-Judae (Agaricomycetes). Int. J. Med. Mushrooms 21 (10), 1033–1042. doi:10.1615/IntJMedMushrooms.2019032353
Shi, M., Zhang, Z., and Yang, Y. (2013). Antioxidant and Immunoregulatory Activity of Ganoderma Lucidum Polysaccharide (GLP). Carbohydr. Polym. 95, 200–206. doi:10.1016/j.carbpol.2013.02.081
Silveira, M. L., Smiderle, F. R., Agostini, F., Pereira, E. M., Bonatti-Chaves, M., Wisbeck, E., et al. (2015). Exopolysaccharide Produced by Pleurotus Sajor-Caju: its Chemical Structure and Anti-inflammatory Activity. Int. J. Biol. Macromol. 75, 90–96. doi:10.1016/j.ijbiomac.2015.01.023
Singh, N., Armstrong, D. G., and Lipsky, B. A. (2005). Preventing Foot Ulcers in Patients with Diabetes. JAMA 293, 217–228. doi:10.1001/jama.293.2.217
Srikram, A., and Supapvanich, S. (2016). Proximate Compositions and Bioactive Compounds of Edible Wild and Cultivated Mushrooms from Northeast Thailand. Agric. Nat. Resour. 50, 432–436. doi:10.1016/j.anres.2016.08.001
Stienstra, R., Haim, Y., Riahi, Y., Netea, M., Rudich, A., and Leibowitz, G. (2014). Autophagy in Adipose Tissue and the Beta Cell: Implications for Obesity and Diabetes. Diabetologia 57, 1505–1516. doi:10.1007/s00125-014-3255-3
Stojkovic, D., Smiljkovic, M., Ciric, A., Glamoclija, J., Van Griensven, L., Ferreira, I. C. F. R., et al. (2019). An Insight into Antidiabetic Properties of Six Medicinal and Edible Mushrooms: Inhibition of α-amylase and α-glucosidase Linked to Type-2 Diabetes. South Afr. J. Bot. 120, 100–103. doi:10.1016/j.sajb.2018.01.007
Sun, J. E., Ao, Z. H., Lu, Z. M., Xu, H. Y., Zhang, X. M., Dou, W. F., et al. (2008). Antihyperglycemic and Antilipidperoxidative Effects of Dry Matter of Culture Broth of Inonotus Obliquus in Submerged Culture on normal and Alloxan-Diabetes Mice. J. Ethnopharmacol. 118, 7–13. doi:10.1016/j.jep.2008.02.030
Suryavanshi, S. V., and Kulkarni, Y. A. (2017). NF-κβ: A Potential Target in the Management of Vascular Complications of Diabetes. Front. Pharmacol. 8, 798. doi:10.3389/fphar.2017.00798
Szabó, C., Biser, A., Benko, R., Böttinger, E., and Suszták, K. (2006). Poly(ADP-ribose) Polymerase Inhibitors Ameliorate Nephropathy of Type 2 Diabetic Leprdb/db Mice. Diabetes 55, 3004–3012. doi:10.2337/db06-0147
Teo, C. F., Wollaston-Hayden, E. E., and Wells, L. (2010). Hexosamine Flux, the O-GlcNAc Modification, and the Development of Insulin Resistance in Adipocytes. Mol. Cell. Endocrinol. 318, 44–53. doi:10.1016/j.mce.2009.09.022
Theivendren, P., Kunjiappan, S., Hegde, Y. M., Vellaichamy, S., Gopal, M., Dhramalingam, S. R., et al. (2021). Importance of Protein Kinase and its Inhibitor: A Review. Protein Kinases Promis. Targets Anticancer Drug Res. 75, 1.
Thyagarajan-Sahu, A., Lane, B., and Sliva, D. (2011). ReishiMax, Mushroom Based Dietary Supplement, Inhibits Adipocyte Differentiation, Stimulates Glucose Uptake and Activates AMPK. BMC Complement. Altern. Med. 11, 74–14. doi:10.1186/1472-6882-11-74
Tie, L., Yang, H. Q., An, Y., Liu, S. Q., Han, J., Xu, Y., et al. (2012). Ganoderma Lucidum Polysaccharide Accelerates Refractory Wound Healing by Inhibition of Mitochondrial Oxidative Stress in Type 1 Diabetes. Cell. Physiol. Biochem. 29, 583–594. doi:10.1159/000338512
Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X., Pyzik, R., et al. (2010). Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet. J. Am. Diet. Assoc. 110, 911–e12. doi:10.1016/j.jada.2010.03.018
Vitak, T. Y., Wasser, S. P., Nevo, E., and Sybirna, N. O. (2017). Enzymatic System of Antioxidant protection of Erythrocytes in Diabetic Rats Treated with Medicinal Mushrooms Agaricus Brasiliensis and Ganoderma Lucidum (Agaricomycetes). Int. J. Med. Mushrooms 19 (8), 697–708. doi:10.1615/IntJMedMushrooms.2017021305
Volpe, C. M. O., Villar-Delfino, P. H., Dos Anjos, P. M. F., and Nogueira-Machado, J. A. (2018). Cellular Death, Reactive Oxygen Species (ROS) and Diabetic Complications. Cell Death Dis 9, 119–9. doi:10.1038/s41419-017-0135-z
Vyacheslav, B., Alexey, B., Aliaksandr, A., Valentina, M., Tatyana, P., Aliaksandar, K., et al. (2019). Polysaccharides of Mushroom Phallus Impudicus Mycelium: Immunomodulating and Wound Healing Properties. Mod. Food Sci. Tech. 35 (9), 30–37.
Wahyuni, N., Ilyas, S., and Fitrie, A. A. (2017). Effect of Pleurotus Ostreatus on Pancreatic Beta Cells of Diabetes Mellitus Mice Model. jifi 15, 155–159. doi:10.35814/jifi.v15i2.507
Wang, C., Santhanam, R. K., Gao, X., Chen, Z., Chen, Y., Wang, C., et al. (2018b). Preparation, Characterization of Polysaccharides Fractions from Inonotus Obliquus and Their Effects on α-amylase, α-glucosidase Activity and H2O2-Induced Oxidative Damage in Hepatic L02 Cells. J. Funct. Foods 48, 179–189. doi:10.1016/j.jff.2018.07.024
Wang, J., Teng, L., Liu, Y., Hu, W., Chen, W., Hu, X., et al. (2016a). Studies on the Antidiabetic and Antinephritic Activities of Paecilomyces Hepiali Water Extract in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats. J. Diabetes Res. 2016, 4368380. doi:10.1155/2016/4368380
Wang, J., Wang, C., Li, S., Li, W., Yuan, G., Pan, Y., et al. (2017). Anti-diabetic Effects of Inonotus Obliquus Polysaccharides in Streptozotocin-Induced Type 2 Diabetic Mice and Potential Mechanism via PI3K-Akt Signal Pathway. Biomed. Pharmacother. 95, 1669–1677. doi:10.1016/j.biopha.2017.09.104
Wang, J. C., Hu, S. H., Wang, J. T., Chen, K. S., and Chia, Y. C. (2005). Hypoglycemic Effect of Extract ofHericium erinaceus. J. Sci. Food Agric. 85, 641–646. doi:10.1002/jsfa.1928
Wang, J. H., Xu, J. L., Zhang, J. C., Liu, Y., Sun, H. J., and Zha, X. (2015). Physicochemical Properties and Antioxidant Activities of Polysaccharide from floral Mushroom Cultivated in Huangshan Mountain. Carbohydr. Polym. 131, 240–247. doi:10.1016/j.carbpol.2015.05.052
Wang, S., Ding, L., Ji, H., Xu, Z., Liu, Q., and Zheng, Y. (2016b). The Role of P38 MAPK in the Development of Diabetic Cardiomyopathy. Int. J. Mol. Sci. 17, 1037. doi:10.3390/ijms17071037
Wasser, S. P., and Weis, A. L. (1999). Medicinal Properties of Substances Occurring in Higher Basidiomycetes Mushrooms: Current Perspectives (Review). Int. J. Med. Mushrooms 1, 31–62. doi:10.1615/intjmedmushrooms.v1.i1.30
Wisbeck, E., Facchini, J. M., Alves, E. P., Silveira, M. L. L., Gern, R. M. M., Ninow, J. L., et al. (2017). A Polysaccharide Fraction Extracted from Pleurotus Ostreatus Mycelial Biomass Inhibit Sarcoma 180 Tumor. Acad. Bras Cienc 89, 2013–2020. doi:10.1590/0001-3765201720150635
Wu, S., Li, F., Jia, S., Ren, H., Gong, G., Wang, Y., et al. (2014). Drying Effects on the Antioxidant Properties of Polysaccharides Obtained from Agaricus Blazei Murrill. Carbohydr. Polym. 103, 414–417. doi:10.1016/j.carbpol.2013.11.075
Wu, T., and Xu, B. (2015). Antidiabetic and Antioxidant Activities of Eight Medicinal Mushroom Species from China. Int. J. Med. Mushrooms 17 (2), 129–140. doi:10.1615/intjmedmushrooms.v17.i2.40
Xiao, J. H., Xiao, D. M., Chen, D. X., Xiao, Y., Liang, Z. Q., and Zhong, J. J. (2012). Polysaccharides from the Medicinal Mushroom Cordyceps Taii Show Antioxidant and Immunoenhancing Activities in a D-Galactose-Induced Aging Mouse Model. Evid. Based Complement. Alternat. Med. 2012, 273435. doi:10.1155/2012/273435
Xiong, M., Huang, Y., Liu, Y., Huang, M., Song, G., Ming, Q., et al. (2018). Antidiabetic Activity of Ergosterol from Pleurotus Ostreatus in KK-Ay Mice with Spontaneous Type 2 Diabetes Mellitus. Mol. Nutr. Food Res. 62, 1700444. doi:10.1002/mnfr.201700444
Xu, S., Ye, B., Dou, Y., Hu, M., and Rong, X. (2016). Coriolus Versicolor Polysaccharide Regulates Inflammatory Cytokines Expression and Ameliorates Hyperlipidemia in Mice. Acta Sci. Nat. Univ. Nankaiensis 49, 81–87.
Xu, Y., Zhang, X., Yan, X. H., Zhang, J. L., Wang, L. Y., Xue, H., et al. (2019). Characterization, Hypolipidemic and Antioxidant Activities of Degraded Polysaccharides from Ganoderma Lucidum. Int. J. Biol. Macromol. 135, 706–716. doi:10.1016/j.ijbiomac.2019.05.166
Yadav, D., and Negi, P. S. (2021). Bioactive Components of Mushrooms: Processing Effects and Health Benefits. Food Res. Int. 148, 110599. doi:10.1016/j.foodres.2021.110599
Yan, C., Kong, F., Zhang, D., and Cui, J. (2013). Anti-glycated and Antiradical Activities In Vitro of Polysaccharides from Ganoderma Capense. Pharmacogn. Mag. 9, 23–27. doi:10.4103/0973-1296.108132
Yang, H., Kim, M., Kwon, D., Kim, D., Zhang, T., Ha, C., et al. (2018). Combination of Aronia, Red Ginseng, Shiitake Mushroom and Nattokinase Potentiated Insulin Secretion and Reduced Insulin Resistance with Improving Gut Microbiome Dysbiosis in Insulin Deficient Type 2 Diabetic Rats. Nutrients 10, 948. doi:10.3390/nu10070948
Yap, H. Y., Tan, N. H., Ng, S. T., Tan, C. S., and Fung, S. Y. (2018). Inhibition of Protein Glycation by Tiger Milk Mushroom [Lignosus Rhinocerus (Cooke) Ryvarden] and Search for Potential Anti-diabetic Activity-Related Metabolic Pathways by Genomic and Transcriptomic Data Mining. Front. Pharmacol. 9, 103. doi:10.3389/fphar.2018.00103
Yin, C., Noratto, G. D., Fan, X., Chen, Z., Yao, F., Shi, D., et al. (2020). The Impact of Mushroom Polysaccharides on Gut Microbiota and its Beneficial Effects to Host: A Review. Carbohydr. Polym. 250, 116942. doi:10.1016/j.carbpol.2020.116942
Ying, Y. M., Zhang, L. Y., Zhang, X., Bai, H. B., Liang, D. E., Ma, L. F., et al. (2014). Terpenoids with Alpha-Glucosidase Inhibitory Activity from the Submerged Culture of Inonotus Obliquus. Phytochemistry 108, 171–176. doi:10.1016/j.phytochem.2014.09.022
Yoshioka, Y., Harada, E., Ge, D., Imai, K., Katsuzaki, H., Mishima, T., et al. (2017). Adenosine Isolated from Grifola Gargal Promotes Glucose Uptake via PI3K and AMPK Signalling Pathways in Skeletal Muscle Cells. J. Funct. Foods 33, 268–277. doi:10.1016/j.jff.2017.03.050
Zahid, M. T., Idrees, M., Abdullah, I., Ying, W., Zaki, A. H., and Bao, H. (2020). Antidiabetic Properties of the Red Belt Conk Medicinal Mushroom Fomitopsis Pinicola (Agaricomycetes) Extracts on Streptozotocin-Induced Diabetic Rats. Int. J. Med. Mushrooms 22 (8), 731–741. doi:10.1615/IntJMedMushrooms.2020035472
Zhai, X., Zhao, A., Geng, L., and Xu, C. (2013). Fermentation Characteristics and Hypoglycemic Activity of an Exopolysaccharide Produced by Submerged Culture of Stropharia Rugosoannulata #2. Ann. Microbiol. 63 (3), 1013–1020. doi:10.1007/s13213-012-0555-z
Zhang, J., Ma, K., Chen, H., Wang, K., Xiong, W., Bao, L., et al. (2017b). A Novel Polycyclic Meroterpenoid with Aldose Reductase Inhibitory Activity from Medicinal Mushroom Ganoderma Leucocontextum. J. Antibiot. (Tokyo) 70, 915–917. doi:10.1038/ja.2017.57
Zhang, J., Meng, G., Zhai, G., Yang, Y., Zhao, H., and Jia, L. (2016). Extraction, Characterization and Antioxidant Activity of Polysaccharides of Spent Mushroom Compost of Ganoderma Lucidum. Int. J. Biol. Macromol. 82, 432–439. doi:10.1016/j.ijbiomac.2015.10.016
Zhang, J., Meng, G., Zhang, C., Lin, L., Xu, N., Liu, M., et al. (2015a). The Antioxidative Effects of Acidic-, Alkalic-, and Enzymatic-Extractable Mycelium Zinc Polysaccharides by Pleurotus Djamor on Liver and Kidney of Streptozocin-Induced Diabetic Mice. BMC Complement. Altern. Med. 15, 440–512. doi:10.1186/s12906-015-0964-1
Zhang, P., Li, T., Wu, X., Nice, E. C., Huang, C., and Zhang, Y. (2020). Oxidative Stress and Diabetes: Antioxidative Strategies. Front. Med. 14, 583–600. doi:10.1007/s11684-019-0729-1
Zhang, T., Jayachandran, M., Ganesan, K., and Xu, B. (2018e). Black Truffle Aqueous Extract Attenuates Oxidative Stress and Inflammation in STZ-Induced Hyperglycemic Rats via Nrf2 and NF-Κb Pathways. Front. Pharmacol. 9, 1257. doi:10.3389/fphar.2018.01257
Zhang, X., Qi, C., Guo, Y., Zhou, W., and Zhang, Y. (2016b). Toll-like Receptor 4-related Immunostimulatory Polysaccharides: Primary Structure, Activity Relationships, and Possible Interaction Models. Carbohydr. Polym. 149, 186–206. doi:10.1016/j.carbpol.2016.04.097
Zhang, Y., Wang, Z., Jin, G., Yang, X., and Zhou, H. (2017d). Regulating Dyslipidemia Effect of Polysaccharides from Pleurotus Ostreatus on Fat-Emulsion-Induced Hyperlipidemia Rats. Int. J. Biol. Macromol. 101, 107–116. doi:10.1016/j.ijbiomac.2017.03.084
Zhao, C., Liao, Z., Wu, X., Liu, Y., Liu, X., Lin, Z., et al. (2014). Isolation, Purification, and Structural Features of a Polysaccharide from Phellinus Linteus and its Hypoglycemic Effect in Alloxan-Induced Diabetic Mice. J. Food Sci. 79, H1002–H1010. doi:10.1111/1750-3841.12464
Zhao, H., Lai, Q., Zhang, J., Huang, C., and Jia, L. (2018). Antioxidant and Hypoglycemic Effects of Acidic-Extractable Polysaccharides from Cordyceps Militaris on Type 2 Diabetes Mice. Oxid. Med. Cell. Longev. 2018, 9150807. doi:10.1155/2018/9150807
Zheng, Y., Ley, S. H., and Hu, F. B. (2018). Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and its Complications. Nat. Rev. Endocrinol. 14, 88–98. doi:10.1038/nrendo.2017.151
Zhu, K. X., Nie, S. P., Tan, L. H., Li, C., Gong, D. M., and Xie, M. Y. (2016). A Polysaccharide from Ganoderma Atrum Improves Liver Function in Type 2 Diabetic Rats via Antioxidant Action and Short-Chain Fatty Acids Excretion. J. Agric. Food Chem. 64, 1938–1944. doi:10.1021/acs.jafc.5b06103
Zong, A., Cao, H., and Wang, F. (2012). Anticancer Polysaccharides from Natural Resources: A Review of Recent Research. Carbohydr. Polym. 90, 1395–1410. doi:10.1016/j.carbpol.2012.07.026
PubMed Abstract | CrossRef Full Text | Google Scholar
Ciamporcero, E., Shen, H., Ramakrishnan, S., Yu Ku, S., Chintala, S., Shen, L., et al. (2016). YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene 35 (12), 1541–1553. doi:10.1038/onc.2015.219
Dhawan, D., Paoloni, M., Shukradas, S., Choudhury, D. R., Craig, B. A., Ramos-Vara, J. A., et al. (2015). Comparative gene expression analyses identify luminal and basal subtypes of canine invasive urothelial carcinoma that mimic patterns in human invasive bladder cancer. PLoS One 10 (9), e0136688. doi:10.1371/journal.pone.0136688
Elbadawy, M., Fujisaka, K., Yamamoto, H., Tsunedomi, R., Nagano, H., Ayame, H., et al. (2022). Establishment of an experimental model of normal dog bladder organoid using a three-dimensional culture method. Biomed. Pharmacother. 151, 113105. doi:10.1016/j.biopha.2022.113105
Elbadawy, M., Kato, Y., Saito, N., Hayashi, K., Abugomaa, A., Kobayashi, M., et al. (2021a). Establishment of intestinal organoid from rousettus leschenaultii and the susceptibility to bat-associated viruses, SARS-CoV-2 and pteropine orthoreovirus. Int. J. Mol. Sci. 22 (19), 10763. doi:10.3390/ijms221910763
Ciamporcero, E., Shen, H., Ramakrishnan, S., Yu Ku, S., Chintala, S., Shen, L., et al. (2016). YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene 35 (12), 1541–1553. doi:10.1038/onc.2015.219
Dhawan, D., Paoloni, M., Shukradas, S., Choudhury, D. R., Craig, B. A., Ramos-Vara, J. A., et al. (2015). Comparative gene expression analyses identify luminal and basal subtypes of canine invasive urothelial carcinoma that mimic patterns in human invasive bladder cancer. PLoS One 10 (9), e0136688. doi:10.1371/journal.pone.0136688
Elbadawy, M., Fujisaka, K., Yamamoto, H., Tsunedomi, R., Nagano, H., Ayame, H., et al. (2022). Establishment of an experimental model of normal dog bladder organoid using a three-dimensional culture method. Biomed. Pharmacother. 151, 113105. doi:10.1016/j.biopha.2022.113105
Elbadawy, M., Kato, Y., Saito, N., Hayashi, K., Abugomaa, A., Kobayashi, M., et al. (2021a). Establishment of intestinal organoid from rousettus leschenaultii and the susceptibility to bat-associated viruses, SARS-CoV-2 and pteropine orthoreovirus. Int. J. Mol. Sci. 22 (19), 10763. doi:10.3390/ijms221910763
Balandaykin, M. E., and Zmitrovich, I. V. (2015). Review on chaga medicinal mushroom, inonotus obliquus (higher basidiomycetes): Realm of medicinal applications and approaches on estimating its resource potential. Int. J. Med. Mushrooms 17 (2), 95–104. doi:10.1615/intjmedmushrooms.v17.i2.10
Buckner, C. A., Lafrenie, R. M., Denommee, J. A., Caswell, J. M., and Want, D. A. (2018). Complementary and alternative medicine use in patients before and after a cancer diagnosis. Curr. Oncol. 25 (4), e275–e281. doi:10.3747/co.25.3884
Chung, M. J., Chung, C. K., Jeong, Y., and Ham, S. S. (2010). Anticancer activity of subfractions containing pure compounds of Chaga mushroom (Inonotus obliquus) extract in human cancer cells and in Balbc/c mice bearing Sarcoma-180 cells. Nutr. Res. Pract. 4 (3), 177–182. doi:10.4162/nrp.2010.4.3.177
Ciamporcero, E., Shen, H., Ramakrishnan, S., Yu Ku, S., Chintala, S., Shen, L., et al. (2016). YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene 35 (12), 1541–1553. doi:10.1038/onc.2015.219
Lemieszek, M. K., Langner, E., Kaczor, J., Kandefer-Szerszen, M., Sanecka, B., Mazurkiewicz, W., et al. (2011). Anticancer effects of fraction isolated from fruiting bodies of chaga medicinal mushroom, inonotus obliquus (pers.:Fr.) pilat (aphyllophoromycetideae): In vitro studies. Int. J. Med. Mushrooms 13 (2), 131–143. doi:10.1615/intjmedmushr.v13.i2.50
Li, Y., Lin, K., Yang, Z., Han, N., Quan, X., Guo, X., et al. (2017). Bladder cancer stem cells: Clonal origin and therapeutic perspectives. Oncotarget 8 (39), 66668–66679. doi:10.18632/oncotarget.19112
Maeda, S., Tomiyasu, H., Tsuboi, M., Inoue, A., Ishihara, G., Uchikai, T., et al. (2018). Comprehensive gene expression analysis of canine invasive urothelial bladder carcinoma by RNA-Seq. BMC Cancer 18 (1), 472. doi:10.1186/s12885-018-4409-3
Mutsaers, A. J., Widmer, W. R., and Knapp, D. W. (2003). Canine transitional cell carcinoma. J. Vet. Intern Med. 17 (2), 136–144. doi:10.1892/0891-6640(2003)017<0136:ctcc>2.3.co;2
Lemieszek, M. K., Langner, E., Kaczor, J., Kandefer-Szerszen, M., Sanecka, B., Mazurkiewicz, W., et al. (2011). Anticancer effects of fraction isolated from fruiting bodies of chaga medicinal mushroom, inonotus obliquus (pers.:Fr.) pilat (aphyllophoromycetideae): In vitro studies. Int. J. Med. Mushrooms 13 (2), 131–143. doi:10.1615/intjmedmushr.v13.i2.50
Li, Y., Lin, K., Yang, Z., Han, N., Quan, X., Guo, X., et al. (2017). Bladder cancer stem cells: Clonal origin and therapeutic perspectives. Oncotarget 8 (39), 66668–66679. doi:10.18632/oncotarget.19112
Maeda, S., Tomiyasu, H., Tsuboi, M., Inoue, A., Ishihara, G., Uchikai, T., et al. (2018). Comprehensive gene expression analysis of canine invasive urothelial bladder carcinoma by RNA-Seq. BMC Cancer 18 (1), 472. doi:10.1186/s12885-018-4409-3
Mutsaers, A. J., Widmer, W. R., and Knapp, D. W. (2003). Canine transitional cell carcinoma. J. Vet. Intern Med. 17 (2), 136–144. doi:10.1892/0891-6640(2003)017<0136:ctcc>2.3.co;2
Zhang, X., Bao, C., and Zhang, J. (2018). Inotodiol suppresses proliferation of breast cancer in rat model of type 2 diabetes mellitus via downregulation of beta-catenin signaling. Biomed. Pharmacother. 99, 142–150. doi:10.1016/j.biopha.2017.12.084
Zhao, F., Mai, Q., Ma, J., Xu, M., Wang, X., Cui, T., et al. (2015). Triterpenoids from Inonotus obliquus and their antitumor activities. Fitoterapia 101, 34–40. doi:10.1016/j.fitote.2014.12.005
Zhao, F., Xia, G., Chen, L., Zhao, J., Xie, Z., Qiu, F., et al. (2016). Chemical constituents from Inonotus obliquus and their antitumor activities. J. Nat. Med. 70 (4), 721–730. doi:10.1007/s11418-016-1002-4
Chung, M. J., Chung, C. K., Jeong, Y., and Ham, S. S. (2010). Anticancer activity of subfractions containing pure compounds of Chaga mushroom (Inonotus obliquus) extract in human cancer cells and in Balbc/c mice bearing Sarcoma-180 cells. Nutr. Res. Pract. 4 (3), 177–182. doi:10.4162/nrp.2010.4.3.177
Ciamporcero, E., Shen, H., Ramakrishnan, S., Yu Ku, S., Chintala, S., Shen, L., et al. (2016). YAP activation protects urothelial cell carcinoma from treatment-induced DNA damage. Oncogene 35 (12), 1541–1553. doi:10.1038/onc.2015.219
Dhawan, D., Paoloni, M., Shukradas, S., Choudhury, D. R., Craig, B. A., Ramos-Vara, J. A., et al. (2015). Comparative gene expression analyses identify luminal and basal subtypes of canine invasive urothelial carcinoma that mimic patterns in human invasive bladder cancer. PLoS One 10 (9), e0136688. doi:10.1371/journal.pone.0136688
Elbadawy, M., Fujisaka, K., Yamamoto, H., Tsunedomi, R., Nagano, H., Ayame, H., et al. (2022). Establishment of an experimental model of normal dog bladder organoid using a three-dimensional culture method. Biomed. Pharmacother. 151, 113105. doi:10.1016/j.biopha.2022.113105
Keywords: Chaga mushrooms, Inonotus obliquus, bladder cancer, organoids, CSCs, cell cycle, apoptosis, c-Myc
Citation: Abugomaa A, Elbadawy M, Ishihara Y, Yamamoto H, Kaneda M, Yamawaki H, Shinohara Y, Usui T and Sasaki K (2023) Anti-cancer activity of Chaga mushroom (Inonotus obliquus) against dog bladder cancer organoids. Front. Pharmacol. 14:1159516. doi: 10.3389/fphar.2023.1159516
Received: 06 February 2023; Accepted: 10 April 2023;
Published: 19 April 2023.
https://www.frontiersin.org/articles/10.3389/fphar.2023.1159516/full#B7
https://pubmed.ncbi.nlm.nih.gov/19051352/
https://www.mdpi.com/2072-6643/11/4/906/htm
Trusted Source, 1, 2